
Nearly Optimal Sparse Fourier Transform

Haitham Hassanieh, Piotr Indyk, Dina Katabi and Eric Price
CSAIL, MIT

{haithamh,indyk,dk,ecprice}@mit.edu

ABSTRACT
We consider the problem of computing the k-sparse approxi-
mation to the discrete Fourier transform of an n-dimensional
signal. We show:

• AnO(k logn)-time randomized algorithm for the case where
the input signal has at most k non-zero Fourier coeffi-
cients, and

• AnO(k logn log(n/k))-time randomized algorithm for gen-
eral input signals.

Both algorithms achieve o(n logn) time, and thus improve
over the Fast Fourier Transform, for any k = o(n). They are
the first known algorithms that satisfy this property. Also,
if one assumes that the Fast Fourier Transform is optimal,
the algorithm for the exactly k-sparse case is optimal for any
k = nΩ(1).

We complement our algorithmic results by showing that
any algorithm for computing the sparse Fourier transform
of a general signal must use at least Ω(k log(n/k)/ log log n)
signal samples, even if it is allowed to perform adaptive sam-
pling.

Categories and Subject Descriptors: F.2 [Analysis of
Algorithms & Problem Complexity]: General

General Terms: Theory, Algorithms

Keywords: Fourier sampling, Compressive sensing, Sparse
recovery

1. INTRODUCTION
The discrete Fourier transform (DFT) is one of the most

important and widely used computational tasks. Its appli-
cations are broad and include signal processing, communica-
tions, and audio/image/video compression. Hence, fast al-
gorithms for DFT are highly valuable. Currently, the fastest
such algorithm is the Fast Fourier Transform (FFT), which
computes the DFT of an n-dimensional signal in O(n logn)
time. The existence of DFT algorithms faster than FFT is
one of the central questions in the theory of algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

A general algorithm for computing the exact DFT must
take time at least proportional to its output size, i.e., Ω(n).
In many applications, however, most of the Fourier coeffi-
cients of a signal are small or equal to zero, i.e., the output
of the DFT is (approximately) sparse. This is the case for
video signals, where a typical 8x8 block in a video frame has
on average 7 non-negligible frequency coefficients (i.e., 89%
of the coefficients are negligible) [CGX96]. Images and audio
data are equally sparse. This sparsity provides the rationale
underlying compression schemes such as MPEG and JPEG.
Other sparse signals appear in computational learning the-
ory [KM91, LMN93], analysis of Boolean functions [KKL88,
O’D08], compressed sensing [Don06, CRT06], multi-scale
analysis [DRZ07], similarity search in databases [AFS93],
spectrum sensing for wideband channels [LVS11], and data-
center monitoring [MNL10].

For sparse signals, the Ω(n) lower bound for the complex-
ity of DFT no longer applies. If a signal has a small number
k of non-zero Fourier coefficients – the exactly k-sparse case
– the output of the Fourier transform can be represented suc-
cinctly using only k coefficients. Hence, for such signals, one
may hope for a DFT algorithm whose runtime is sublinear in
the signal size, n. Even for a general n-dimensional signal x
– the general case – one can find an algorithm that computes
the best k-sparse approximation of its Fourier transform, x̂,
in sublinear time. The goal of such an algorithm is to com-
pute an approximation vector x̂′ that satisfies the following
`2/`2 guarantee:

‖x̂− x̂′‖2 ≤ C min
k-sparse y

‖x̂− y‖2, (1)

where C is some approximation factor and the minimiza-
tion is over k-sparse signals. We allow the algorithm to be
randomized, and only succeed with constant (say, 2/3) prob-
ability.

The past two decades have witnessed significant advances
in sublinear sparse Fourier algorithms. The first such al-
gorithm (for the Hadamard transform) appeared in [KM91]
(building on [GL89]). Since then, several sublinear sparse
Fourier algorithms for complex inputs have been discovered
[Man92, GGI+02, AGS03, GMS05, Iwe10, Aka10, HIKP12b].
These algorithms provide1 the guarantee in Equation (1).2

The main value of these algorithms is that they outper-

1The algorithm of [Man92], as stated in the paper, addresses
only the exactly k-sparse case. However, it can be extended
to the general case using relatively standard techniques.
2All of the above algorithms, as well as the algorithms in this
paper, need to make some assumption about the precision of
the input; otherwise, the right-hand-side of the expression

563

STOC’12, May 19–22, 2012, New York, New York, USA.

form FFT’s runtime for sparse signals. For very sparse
signals, the fastest algorithm is due to [GMS05] and has
O(k logc(n) log(n/k)) runtime, for some3 c > 2. This algo-
rithm outperforms FFT for any k smaller than Θ(n/ loga n)
for some a > 1. For less sparse signals, the fastest algo-
rithm is due to [HIKP12b], and has O(

√
nk log3/2 n) run-

time. This algorithm outperforms FFT for any k smaller
than Θ(n/ logn).

Despite impressive progress on sparse DFT, the state of
the art suffers from two main limitations:

1. None of the existing algorithms improves over FFT’s run-
time for the whole range of sparse signals, i.e., k = o(n).

2. Most of the aforementioned algorithms are quite complex,
and suffer from large “big-Oh” constants (the algorithm of
[HIKP12b] is an exception, but has a running time that
is polynomial in n).

Results.
In this paper, we address these limitations by presenting

two new algorithms for the sparse Fourier transform. We
require that the length n of the input signal is a power of 2.
We show:

• AnO(k logn)-time algorithm for the exactly k-sparse case,
and
• AnO(k logn log(n/k))-time algorithm for the general case.

The key property of both algorithms is their ability to achieve
o(n logn) time, and thus improve over the FFT, for any
k = o(n). These algorithms are the first known algorithms
that satisfy this property. Moreover, if one assume that
FFT is optimal and hence the DFT cannot be computed
in less than O(n logn) time, the algorithm for the exactly

k-sparse case is optimal4 as long as k = nΩ(1). Under the
same assumption, the result for the general case is at most
one log logn factor away from the optimal runtime for the
case of “large” sparsity k = n/ logO(1) n.

Furthermore, our algorithm for the exactly sparse case
(depicted as Algorithm 3.1 on page 5) is quite simple and
has low big-Oh constants. In particular, our preliminary
implementation of a variant of this algorithm is faster than
FFTW, a highly efficient implementation of the FFT, for
n = 222 and k ≤ 217 [HIKP12a]. In contrast, for the same
signal size, prior algorithms were faster than FFTW only for
k ≤ 2000 [HIKP12b].5

We complement our algorithmic results by showing that
any algorithm that works for the general case must use at
least Ω(k log(n/k)/ log log n) samples from x. The lower
bound uses techniques from [PW11], which shows a lower
bound of Ω(k log(n/k)) for the number of arbitrary linear
measurements needed to compute the k-sparse approxima-
tion of an n-dimensional vector x̂. In comparison to [PW11],
our bound is slightly worse but it holds even for adaptive

in Equation (1) contains an additional additive term. See
Preliminaries for more details.
3The paper does not estimate the exact value of c. We
estimate that c ≈ 3.
4One also needs to assume that k divides n. See Section 5
for more details.
5Note that both numbers (k ≤ 217 and k ≤ 2000) are for
the exactly k-sparse case. The algorithm in [HIKP12b] can
deal with the general case, but the empirical runtimes are
higher.

sampling, where the algorithm selects the samples based on
the values of the previously sampled coordinates.6 Note that
our algorithms are non-adaptive, and thus limited by the
more stringent lower bound of [PW11].

Techniques – overview.
We start with an overview of the techniques used in prior

works. At a high level, sparse Fourier algorithms work by
binning the Fourier coefficients into a small number of bins.
Since the signal is sparse in the frequency domain, each bin
is likely7 to have only one large coefficient, which can then
be located (to find its position) and estimated (to find its
value). The binning has to be done in sublinear time, and
thus these algorithms bin the Fourier coefficients using an n-
dimensional filter vector G that is concentrated both in time
and frequency. That is, G is zero except at a small number
of time coordinates, and its Fourier transform Ĝ is negligi-
ble except at a small fraction (about 1/k) of the frequency
coordinates, representing the filter’s “pass” region. Each bin
essentially receives only the frequencies in a narrow range
corresponding to the pass region of the (shifted) filter Ĝ,
and the pass regions corresponding to different bins are dis-
joint. In this paper, we use filters introduced in [HIKP12b].
Those filters (defined in more detail in Preliminaries) have

the property that the value of Ĝ is “large” over a constant
fraction of the pass region, referred to as the “super-pass”
region. We say that a coefficient is “isolated” if it falls into
a filter’s super-pass region and no other coefficient falls into
filter’s pass region. Since the super-pass region of our filters
is a constant fraction of the pass region, the probability of
isolating a coefficient is constant.

To achieve the stated running times, we need a fast method
for locating and estimating isolated coefficients. Further,
our algorithm is iterative, so we also need a fast method
for updating the signal so that identified coefficients are not
considered in future iterations. Below, we describe these
methods in more detail.

New techniques – location and estimation.
Our location and estimation methods depends on whether

we handle the exactly sparse case or the general case. In the
exactly sparse case, we show how to estimate the position
of an isolated Fourier coefficient using only two samples of
the filtered signal. Specifically, we show that the phase dif-
ference between the two samples is linear in the index of the
coefficient, and hence we can recover the index by estimating
the phases. This approach is inspired by the frequency off-
set estimation in orthogonal frequency division multiplexing
(OFDM), which is the modulation method used in modern
wireless technologies (see [HT01], Chapter 2).

In order to design an algorithm8 for the general case,

6Note that if we allow arbitrary adaptive linear measure-
ments of a vector x̂, then its k-sparse approximation can
be computed using only O(k log log(n/k)) samples [IPW11].
Therefore, our lower bound holds only where the measure-
ments, although adaptive, are limited to those induced by
the Fourier matrix. This is the case when we want to com-
pute a sparse approximation to x̂ from samples of x.
7One can randomize the positions of the frequencies by
sampling the signal in time domain appropriately [GGI+02,
GMS05]. See Preliminaries for the description.
8We note that although the two-sample approach employed
in our algorithm works in theory only for the exactly k-

564

we employ a different approach. Specifically, we can use
two samples to estimate (with constant probability) indi-
vidual bits of the index of an isolated coefficient. Similar
approaches have been employed in prior work. However, in
those papers, the index was recovered bit by bit, and one
needed Ω(log log n) samples per bit to recover all bits cor-
rectly with constant probability. In contrast, in this paper
we recover the index one block of bits at a time, where each
block consists of O(log logn) bits. This approach is inspired
by the fast sparse recovery algorithm of [GLPS10]. Applying
this idea in our context, however, requires new techniques.
The reason is that, unlike in [GLPS10], we do not have the
freedom of using arbitrary “linear measurements” of the vec-
tor x̂, and we can only use the measurements induced by the
Fourier transform.9 As a result, the extension from “bit re-
covery” to “block recovery” is the most technically involved
part of the algorithm. Section 4.1 contains further intuition
on this part.

New techniques – updating the signal.
The aforementioned techniques recover the position and

the value of any isolated coefficient. However, during each
filtering step, each coefficient becomes isolated only with
constant probability. Therefore, the filtering process needs
to be repeated to ensure that each coefficient is correctly
identified. In [HIKP12b], the algorithm simply performs
the filtering O(logn) times and uses the median estimator
to identify each coefficient with high probability. This, how-
ever, would lead to a running time of O(k log2 n) in the
k-sparse case, since each filtering step takes k logn time.

One could reduce the filtering time by subtracting the
identified coefficients from the signal. In this way, the num-
ber of non-zero coefficients would be reduced by a constant
factor after each iteration, so the cost of the first iteration
would dominate the total running time. Unfortunately, sub-
tracting the recovered coefficients from the signal is a com-
putationally costly operation, corresponding to a so-called
non-uniform DFT (see [GST08] for details). Its cost would
override any potential savings.

In this paper, we introduce a different approach: instead
of subtracting the identified coefficients from the signal, we
subtract them directly from the bins obtained by filtering
the signal. The latter operation can be done in time linear
in the number of subtracted coefficients, since each of them
“falls” into only one bin. Hence, the computational costs
of each iteration can be decomposed into two terms, corre-
sponding to filtering the original signal and subtracting the
coefficients. For the exactly sparse case these terms are as
follows:

• The cost of filtering the original signal isO(B logn), where
B is the number of bins. B is set to O(k′), where k′ is the
the number of yet-unidentified coefficients. Thus, initially
B is equal to O(k), but its value decreases by a constant
factor after each iteration.
• The cost of subtracting the identified coefficients from the

bins is O(k).

Since the number of iterations is O(log k), and the cost of

sparse case, our preliminary experiments show that using a
few more samples to estimate the phase works surprisingly
well even for general signals.
9In particular, the method of [GLPS10] uses measurements
corresponding to a random error correcting code.

filtering is dominated by the first iteration, the total running
time is O(k logn) for the exactly sparse case.

For the general case, we need to set k′ and B more care-
fully to obtain the desired running time. The cost of each
iterative step is multiplied by the number of filtering steps
needed to compute the location of the coefficients, which is
Θ(log(n/B)). If we set B = Θ(k′), this would be Θ(logn)
in most iterations, giving a Θ(k log2 n) running time. This
is too slow when k is close to n. We avoid this by decreasing
B more slowly and k′ more quickly. In the r-th iteration,
we set B = k/poly(r). This allows the total number of
bins to remain O(k) while keeping log(n/B) small—at most
O(log log k) more than log(n/k). Then, by having k′ de-

crease according to k′ = k/rΘ(r) rather than k/2Θ(r), we
decrease the number of rounds to O(log k/ log log k). Some
careful analysis shows that this counteracts the log log k loss
in the log(n/B) term, achieving the desiredO(k logn log(n/k))
running time.

Organization of the paper.
In Section 2, we give notation and definitions used through-

out the paper. Sections 3 and 4 give our algorithm in the
exactly k-sparse and the general case, respectively. Section 5
gives the reduction to the exactly k-sparse case from a k-
dimensional DFT. Section 6 gives the sample complexity
lower bound for the general case. Section 7 describes how to
efficiently implement our filters. Finally, Section 8 discusses
open problems arising from this work.

2. PRELIMINARIES
This section introduces the notation, assumptions, and

definitions used in the rest of this paper.

Notation.
We use [n] to denote the set {1, . . . , n}, and define ω =

e−2πi/n to be an nth root of unity. For any complex number
a, we use φ(a) ∈ [0, 2π] to denote the phase of a. For a com-
plex number a and a real positive number b, the expression
a±b denotes a complex number a′ such that |a− a′| ≤ b. For
a vector x ∈ Cn, its support is denoted by supp(x) ⊂ [n].
We use ‖x‖0 to denote |supp(x)|, the number of non-zero
coordinates of x. Its Fourier spectrum is denoted by x̂, with

x̂i =
1√
n

∑
j∈[n]

ωijxj .

For a vector of length n, indices should be interpreted mod-
ulo n, so x−i = xn−i. This allows us to define convolution

(x ∗ y)i =
∑
j∈[n]

xjyi−j

and the coordinate-wise product (x · y)i = xiyi, so x̂ · y =
x̂ ∗ ŷ.

When i ∈ Z is an index into an n-dimensional vector,
sometimes we use |i| to denote minj≡i (mod n) |j|.

Definitions.
The paper uses two tools introduced in previous papers:

(pseudorandom) spectrum permutation [GGI+02, GMS05,
GST08] and flat filtering windows [HIKP12b].

Definition 2.1. Suppose σ−1 exists mod n. We define

565

the permutation Pσ,a,b by

(Pσ,a,bx)i = xσ(i−a)ω
σbi.

We also define πσ,b(i) = σ(i− b) mod n.

Claim 2.2. P̂σ,a,bxπσ,b(i) = x̂iω
aσi.

Proof.

P̂σ,a,bxσ(i−b) =
1√
n

∑
j∈[n]

ωσ(i−b)j(Pσ,a,bx)j

=
1√
n

∑
j∈[n]

ωσ(i−b)jxσ(j−a)ω
σbj

= ωaσi
1√
n

∑
j∈[n]

ωiσ(j−a)xσ(j−a)

= x̂iω
aσi.

Definition 2.3. We say that (G, Ĝ′) = (GB,δ,α, Ĝ′B,δ,α) ∈
Rn × Rn is a flat window function with parameters B ≥ 1,

δ > 0, and α > 0 if |supp(G)| = O(B
α

log(n/δ)) and Ĝ′

satisfies

• Ĝ′i = 1 for |i| ≤ (1− α)n/(2B)

• Ĝ′i = 0 for |i| ≥ n/(2B)

• Ĝ′i ∈ [0, 1] for all i

•
∥∥∥Ĝ′ − Ĝ∥∥∥

∞
< δ.

The above notion corresponds to the (1/(2B), (1−α)/(2B),
δ, O(B/α log(n/δ))-flat window function in [HIKP12b]. In
Section 7 we give efficient constructions of such window func-
tions, where G can be computed in O(B

α
log(n/δ)) time and

for each i, Ĝ′i can be computed in O(log(n/δ)) time. Of

course, for i /∈ [(1− α)n/(2B), n/(2B)], Ĝ′i ∈ {0, 1} can be
computed in O(1) time.

The fact that Ĝ′i takes ω(1) time to compute for i ∈
[(1 − α)n/(2B), n/(2B)] will add some complexity to our
algorithm and analysis. We will need to ensure that we
rarely need to compute such values. A practical implemen-
tation might find it more convenient to precompute the win-
dow functions in a preprocessing stage, rather than compute
them on the fly.

We use the following lemma from [HIKP12b]:

Lemma 2.4 (Lemma 3.6 of [HIKP12b]). If j 6= 0, n
is a power of two, and σ is a uniformly random odd number
in [n], then Pr[σj ∈ [−C,C] (mod n)] ≤ 4C/n.

Assumptions.
Through the paper, we require that n, the dimension of all

vectors, is an integer power of 2. We also make the following
assumptions about the precision of the vectors x̂:

• For the exactly k-sparse case, we assume that x̂i ∈ {−L, . . . , L}
for some precision parameter L. To simplify the bounds,
we assume that L = nO(1); otherwise the logn term in the
running time bound is replaced by logL.
• For the general case, we only achieve Equation (1) if ‖x̂‖2 ≤
nO(1) · mink-sparse y ‖x̂− y‖2. In general, for any param-
eter δ > 0 we can add δ ‖x̂‖2 to the right hand side of
Equation (1) and run in time O(k log(n/k) log(n/δ)).

procedure HashToBins(x, ẑ, Pσ,a,b, B, δ, α)
Compute ŷjn/B for j ∈ [B], where y = GB,α,δ·(Pσ,a,bx)

Compute ŷ′jn/B = ŷjn/B − (Ĝ′B,α,δ ∗ P̂σ,a,bz)jn/B for

j ∈ [B]

return û given by ûj = ŷ′jn/B .
end procedure
procedure NoiselessSparseFFTInner(x, k′, ẑ, α)

Let B = k′/β, for sufficiently small constant β.
Let δ = 1/(4n2L).
Choose σ uniformly at random from the set of odd

numbers in [n].
Choose b uniformly at random from [n].
û← HashToBins(x, ẑ, Pσ,0,b, B, δ, α).
û′ ← HashToBins(x, ẑ, Pσ,1,b, B, δ, α).
ŵ ← 0.
Compute J = {j : |ûj | > 1/2}.
for j ∈ J do

a← ûj/û
′
j .

i← σ−1(round(φ(a) n
2π

)) mod n.
. φ(a) denotes the phase of a.

v ← round(ûj).
ŵi ← v.

end for
return ŵ

end procedure
procedure NoiselessSparseFFT(x, k)

ẑ ← 0
for t ∈ 0, 1, . . . , log k do

kt ← k/2t, αt ← Θ(2−t).
ẑ ← ẑ + NoiselessSparseFFTInner(x, kt, ẑ, αt).

end for
return ẑ

end procedure

Algorithm 3.1: Exact k-sparse recovery

3. ALGORITHM FOR THE EXACTLY SPARSE
CASE

In this section we assume x̂i ∈ {−L, . . . , L}, where L ≤ nc
for some constant c > 0, and x̂ is k-sparse. We choose
δ = 1/(4n2L). The algorithm (NoiselessSparseFFT) is
described as Algorithm 3.1. The algorithm has three func-
tions:

• HashToBins. This permutes the spectrum of x̂− z with
Pσ,a,b, then “hashes” to B bins. The guarantee will be
described in Lemma 3.3.

• NoiselessSparseFFTInner. Given time-domain access
to x and a sparse vector ẑ such that x̂− z is k′-sparse,
this function finds “most” of x̂− z.

• NoiselessSparseFFT. This iterates NoiselessSparseFFTIn-
ner until it finds x̂ exactly.

We analyze the algorithm “bottom-up”, starting from the
lower-level procedures.

Analysis of NoiselessSparseFFTInner and HashToBins.

For any execution of NoiselessSparseFFTInner, define
the support S = supp(x̂ − ẑ). Recall that πσ,b(i) = σ(i −
b) mod n. Define hσ,b(i) = round(πσ,b(i)B/n) and oσ,b(i) =

566

πσ,b(i)−hσ,b(i)n/B. Note that therefore |oσ,b(i)| ≤ n/(2B).
We will refer to hσ,b(i) as the “bin” that the frequency i is
mapped into, and oσ,b(i) as the“offset”. For any i ∈ S define
two types of events associated with i and S and defined over
the probability space induced by σ and b:

• “Collision” event Ecoll(i): holds iff hσ,b(i) ∈ hσ,b(S \ {i}),
and
• “Large offset” event Eoff (i): holds iff |oσ,b(i)| ≥ (1 −
α)n/(2B).

Claim 3.1. For any i ∈ S, the event Ecoll(i) holds with
probability at most 4|S|/B.

Proof. Consider distinct i, j ∈ S. By Lemma 2.4,

Pr[hσ,b(i) = hσ,b(j)]

≤Pr[πσ,b(i)− πσ,b(j) mod n ∈ [−n/B, n/B]]

= Pr[σ(i− j) mod n ∈ [−n/B, n/B]] ≤ 4/B.

Hence Pr[hσ,b(i) = hσ,b(j)] ≤ 4/B, so Pr[Ecoll(i)] ≤ 4 |S| /B.

Claim 3.2. For any i ∈ S, the event Eoff (i) holds with
probability at most α.

Proof. Note that oσ,b(i) ≡ πσ,b(i) ≡ σ(i−b) (mod n/B).
For any odd σ and any l ∈ [n/B], we have that Prb[σ(i−b) ≡
l (mod n/B)] = B/n. Since only αn/B offsets oσ,b(i) cause
Eoff (i), the claim follows.

Lemma 3.3. Suppose B divides n. The output û of Hash-
ToBins satisfies

ûj =
∑

hσ,b(i)=j

̂(x− z)i ̂(G′B,δ,α)
−oσ,b(i)

ωaσi ± δ ‖x̂‖1 .

Let ζ = |{i ∈ supp(ẑ) | Eoff (i)}|. The running time of Hash-
ToBins is O(B

α
log(n/δ) + ‖ẑ‖0 + ζ log(n/δ)).

Proof. Define the flat window functions G = GB,δ,α and

Ĝ′ = Ĝ′B,δ,α. We have

ŷ = ̂G · Pσ,a,bx = Ĝ ∗ P̂σ,a,bx

ŷ′ = Ĝ′ ∗ ̂Pσ,a,b(x− z) + (Ĝ− Ĝ′) ∗ P̂σ,a,bx

By Claim 2.2, the coordinates of P̂σ,a,bx and x̂ have the same
magnitudes, just different ordering and phase. Therefore∥∥∥(Ĝ− Ĝ′) ∗ P̂σ,a,bx

∥∥∥
∞
≤
∥∥∥Ĝ− Ĝ′∥∥∥

∞

∥∥∥P̂σ,a,bx∥∥∥
1
≤ δ ‖x̂‖1

and hence

ûj = ŷ′jn/B

=
∑

|l|<n/(2B)

Ĝ′−l ̂(Pσ,a,b(x− z))jn/B+l ± δ ‖x̂‖1

=
∑

|πσ,b(i)−jn/B|<n/(2B)̂

G′jn/B−πσ,b(i)
̂(Pσ,a,b(x− z))πσ,b(i) ± δ ‖x̂‖1

=
∑

hσ,b(i)=j

Ĝ′−oσ,b(i)
̂(x− z)iω

aσi ± δ ‖x̂‖1

as desired.
We can compute HashToBins via the following method:

1. Compute y with ‖y‖0 = O(B
α

log(n/δ)) in O(B
α

log(n/δ))
time.

2. Compute v ∈ CB given by vi =
∑
j yi+jB .

3. Because B divides n, by the definition of the Fourier trans-
form (see also Claim 3.7 of [HIKP12b]) we have ŷjn/B = v̂j
for all j. Hence we can compute it with a B-dimensional
FFT in O(B logB) time.

4. For each coordinate i ∈ supp(ẑ), decrease ŷ n
B
hσ,b(i) by

Ĝ′−oσ,b(i)ẑiω
aσi. This takes O(‖ẑ‖0 + ζ log(n/δ)) time,

since computing Ĝ′−oσ,b(i) takesO(log(n/δ)) time if Eoff (i)

holds and O(1) otherwise.

Lemma 3.4. Consider any i ∈ S such that neither Ecoll(i)
nor Eoff (i) holds. Let j = hσ,b(i). Then

round(φ(ûj/û
′
j))

n

2π
) = σi (mod n),

round(ûj) = x̂i − ẑi,

and j ∈ J .

Proof. We know that ‖x̂‖1 ≤ k ‖x̂‖∞ ≤ kL < nL. Then
by Lemma 3.3 and Ecoll(i) not holding,

ûj = ̂(x− z)iĜ′−oσ,b(i) ± δnL.

Because Eoff (i) does not hold, Ĝ′−oσ,b(i) = 1, so

ûj = ̂(x− z)i ± δnL. (2)

Similarly,

û′j = ̂(x− z)iω
σi ± δnL

Then because δnL < 1 ≤
∣∣∣ ̂(x− z)i∣∣∣, the phase is

φ(ûj) = 0± sin−1(δnL) = 0± 2δnL

and φ(û′j) = −σi 2π
n
± 2δnL. Thus φ(ûj/û

′
j) = σi 2π

n
±

4δnL = σi 2π
n
± 1/n by the choice of δ. Therefore

round(φ(ûj/û
′
j)
n

2π
) = σi (mod n).

Also, by Equation (2), round(ûj) = x̂i − ẑi. Finally,
|round(ûj)| = |x̂i − ẑi| ≥ 1, so |ûj | ≥ 1/2. Thus j ∈ J .

For each invocation of NoiselessSparseFFTInner, let
P be the the set of all pairs (i, v) for which the command
ŵi ← v was executed. Claims 3.1 and 3.2 and Lemma 3.4
together guarantee that for each i ∈ S the probability that
P does not contain the pair (i, (x̂−ẑ)i) is at most 4|S|/B+α.
We complement this observation with the following claim.

Claim 3.5. For any j ∈ J we have j ∈ hσ,b(S). There-
fore, |J | = |P | ≤ |S|.

Proof. Consider any j /∈ hσ,b(S). From Equation (2) in
the proof of Lemma 3.4 it follows that |ûj | ≤ δnL < 1/2.

Lemma 3.6. Consider an execution of NoiselessSparseFFTIn-
ner, and let S = supp(x̂− ẑ). If |S| ≤ k′, then

E[‖x̂− ẑ − ŵ‖0] ≤ 8(β + α)|S|.

567

Proof. Let e denote the number of coordinates i ∈ S for
which either Ecoll(i) or Eoff (i) holds. Each such coordinate
might not appear in P with the correct value, leading to an
incorrect value of ŵi. In fact, it might result in an arbitrary
pair (i′, v′) being added to P , which in turn could lead to an
incorrect value of ŵi′ . By Claim 3.5 these are the only ways
that ŵ can be assigned an incorrect value. Thus we have

‖x̂− ẑ − ŵ‖0 ≤ 2e.

Since E[e] ≤ (4|S|/B + α)|S| ≤ (4β + α)|S|, the lemma
follows.

Analysis of NoiselessSparseFFT.
Consider the tth iteration of the procedure, and define

St = supp(x̂ − ẑ) where ẑ denotes the value of the variable
at the beginning of loop. Note that |S0| = | supp(x̂)| ≤ k.

We also define an indicator variable It which is equal to 0
iff |St|/|St−1| ≤ 1/8. If It = 1 we say the the tth iteration
was not successful. Let γ = 8 · 8(β + α). From Lemma 3.6
it follows that Pr[It = 1 | |St−1| ≤ k/2t−1] ≤ γ. From
Claim 3.5 it follows that even if the tth iteration is not suc-
cessful, then |St|/|St−1| ≤ 2.

For any t ≥ 1, define an event E(t) that occurs iff
∑t
i=1 Ii ≥

t/2. Observe that if none of the events E(1) . . . E(t) holds
then |St| ≤ k/2t.

Lemma 3.7. Let E = E(1)∪ . . .∪E(λ) for λ = 1 + log k.

Assume that (4γ)1/2 < 1/4. Then Pr[E] ≤ 1/3.

Proof. Let t′ = dt/2e. We have

Pr[E(t)] ≤

(
t

t′

)
γt
′
≤ 2tγt

′
≤ (4γ)t/2

Therefore

Pr[E] ≤
∑
t

Pr[E(t)] ≤ (4γ)1/2

1− (4γ)1/2
≤ 1/4 · 4/3 = 1/3.

Theorem 3.8. Suppose x̂ is k-sparse with entries from
{−L, . . . , L} for some known L = nO(1). Then the algorithm
NoiselessSparseFFT runs in expected O(k logn) time and
returns the correct vector x̂ with probability at least 2/3.

Proof. The correctness follows from Lemma 3.7. The
running time is dominated by O(log k) executions of Hash-
ToBins.

Assuming a correct run, in every round t we have

‖ẑ‖0 ≤ ‖x̂‖0 + |St| ≤ k + k/2t ≤ 2k.

Therefore

E[|{i ∈ supp(z) | Eoff (i)}|] ≤ α ‖ẑ‖0 ≤ 2αk,

so the expected running time of each execution of HashTo-
Bins is O(B

α
log(n/δ) + k+ αk log(n/δ)) = O(B

α
logn+ k+

αk logn). Setting α = Θ(2−t/2) and β = Θ(1), the expected

running time in round t is O(2−t/2k logn+k+2−t/2k logn).
Therefore the total expected running time is O(k logn).

4. ALGORITHM FOR THE GENERAL CASE
This section shows how to achieve Equation (1) for C =

1 + ε. Pseudocode is in Algorithm 4.1 and 4.2.

4.1 Intuition
Let S denote the “heavy” O(k/ε) coordinates of x̂. The

overarching algorithm SparseFFT works by first “locating”
a set L containing most of S, then “estimating” x̂L to get
ẑ. It then repeats on x̂− z. We will show that each heavy
coordinate has a large constant probability of both being in
L and being estimated well. As a result, x̂− z is probably
nearly k/4-sparse, so we can run the next iteration with
k → k/4. The later iterations then run faster and achieve
a higher success probability, so the total running time is
dominated by the time in the first iteration and the total
error probability is bounded by a constant.

In the rest of this intuition, we will discuss the first it-
eration of SparseFFT with simplified constants. In this
iteration, hashes are to B = O(k/ε) bins and, with 3/4

probability, we get ẑ so x̂− z is nearly k/4-sparse. The ac-
tual algorithm will involve a parameter α in each iteration,
roughly guaranteeing that with 1 −

√
α probability, we get

ẑ so x̂− z is nearly
√
αk-sparse; the formal guarantee will

be given by Lemma 4.8. For this intuition we only consider
the first iteration where α is a constant.

Location.
As in the noiseless case, to locate the “heavy” coordi-

nates we consider the“bins”computed by HashToBins with
Pσ,a,b. This roughly corresponds to first permuting the co-
ordinates according to the (almost) pairwise independent
permutation Pσ,a,b, partitioning the coordinates into B =
O(k/ε) “bins” of n/B consecutive indices, and observing the
sum of values in each bin. We get that each heavy coor-
dinate i has a large constant probability that the follow-
ing two events occur: no other heavy coordinate lies in the
same bin, and only a small (i.e., O(ε/k)) fraction of the mass
from non-heavy coordinates lies in the same bin. For such a
“well-hashed” coordinate i, we would like to find its location
τ = πσ,b(i) = σ(i − b) among the εn/k < n/k consecutive
values that hash to the same bin. Let

θ∗j =
2π

n
(j + σb) (mod 2π). (3)

so θ∗τ = 2π
n
σi. In the noiseless case, we showed that the

difference in phase in the bin using Pσ,0,b and using Pσ,1,b is
θ∗τ plus a negligible O(δ) term. With noise this may not be
true; however, we can say for any β ∈ [n] that the difference
in phase between using Pσ,a,b and Pσ,a+β,b, as a distribution
over uniformly random a ∈ [n], is βθ∗τ +ν with (for example)
E[ν2] = 1/100 (all operations on phases modulo 2π). We
can only hope to get a constant number of bits from such a
“measurement”. So our task is to find τ within a region Q
of size n/k using O(log(n/k)) “measurements” of this form.

One method for doing so would be to simply do measure-
ments with random β ∈ [n]. Then each measurement lies

within π/4 of βθ∗τ with at least 1− E[ν2]

π2/16
> 3/4 probability.

On the other hand, for j 6= τ and as a distribution over β,
β(θ∗τ − θ∗j) is roughly uniformly distributed around the cir-
cle. As a result, each measurement is probably more than
π/4 away from βθ∗j . Hence O(log(n/k)) repetitions suffice
to distinguish among the n/k possibilities for τ . However,
while the number of measurements is small, it is not clear
how to decode in polylog rather than Ω(n/k) time.

To solve this, we instead do a t-ary search on the loca-
tion for t = Θ(log n). At each of O(logt(n/k)) levels, we

568

split our current candidate region Q into t consecutive sub-
regions Q1, . . . , Qt, each of size w. Now, rather than choos-
ing β ∈ [n], we choose β ∈ [n

16w
, n

8w
]. By the upper bound

on β, for each q ∈ [t] the values {βθ∗j | j ∈ Qq} all lie
within βw 2π

n
≤ π/4 of each other on the circle. On the

other hand, if |j − τ | > 16w, then β(θ∗τ − θ∗j) will still be
roughly uniformly distributed about the circle. As a result,
we can check a single candidate element eq from each subre-
gion: if eq is in the same subregion as τ , each measurement
usually agrees in phase; but if eq is more than 16 subregions
away, each measurement usually disagrees in phase. Hence
with O(log t) measurements, we can locate τ to within O(1)

consecutive subregions with failure probability 1/tΘ(1). The
decoding time is O(t log t).

This primitive LocateInner lets us narrow down the can-
didate region for τ to a subregion that is a t′ = Ω(t) factor
smaller. By repeating LocateInner logt′(n/k) times, Lo-
cateSignal can find τ precisely. The number of measure-
ments is then O(log t logt(n/k)) = O(log(n/k)) and the de-
coding time is O(t log t logt(n/k)) = O(log(n/k) logn). Fur-
thermore, the “measurements” (which are actually calls to
HashToBins) are non-adaptive, so we can perform them in
parallel for all O(k/ε) bins, with O(log(n/δ)) average time
per measurement. This gives O(k log(n/k) log(n/δ)) total
time for LocateSignal.

This lets us locate every heavy and “well-hashed” coordi-
nate with 1/tΘ(1) = o(1) failure probability, so every heavy
coordinate is located with arbitrarily high constant proba-
bility.

Estimation.
By contrast, estimation is fairly simple. As in Algorithm 3.1,

we can estimate ̂(x− z)i as ûhσ,b(i), where û is the output of
HashToBins. Unlike in Algorithm 3.1, we now have noise
that may cause a single such estimate to be poor even if
i is “well-hashed”. However, we can show that for a ran-
dom permutation Pσ,a,b the estimate is “good” with con-
stant probability. EstimateValues takes the median of
Rest = O(log 1

ε
) such samples, getting a good estimate with

1−ε/64 probability. Given a candidate set L of size k/ε, with
7/8 probability at most k/8 of the coordinates are badly es-
timated. On the other hand, with 7/8 probability, at least
7k/8 of the heavy coordinates are both located and well es-
timated. This suffices to show that, with 3/4 probability,
the largest k elements J of our estimate ŵ contains good
estimates of 3k/4 large coordinates, so ̂x− z − wJ is close
to k/4-sparse.

4.2 Formal definitions
As in the noiseless case, we define πσ,b(i) = σ(i−b) mod n,

hσ,b(i) = round(πσ,b(i)B/n) and oσ,b(i) = πσ,b(i)−hσ,b(i)n/B.
We say hσ,b(i) is the “bin” that frequency i is mapped into,
and oσ,b(i) is the “offset”. We define h−1

σ,b(j) = {i ∈ [n] |
hσ,b(i) = j}.

Define

Err(x, k) = min
k-sparse y

‖x− y‖2 .

In each iteration of SparseFFT, define x̂′ = x̂− ẑ, and let

ρ2 = Err2(x̂′, k) + δ2n ‖x̂‖21
µ2 = ερ2/k

S = {i ∈ [n] | |x̂′i|2 ≥ µ2}

procedure SparseFFT(x, k, ε, δ)
R← O(log k/ log log k) as in Theorem 4.9.

ẑ(1) ← 0
for r ∈ [R] do

Choose Br, kr, αr as in Theorem 4.9.
Rest ← O(log(Br

αrkr
)) as in Lemma 4.8.

Lr ← LocateSignal(x, ẑ(r), Br, αr, δ)

ẑ(r+1) ← ẑ(r) +
EstimateValues(x, ẑ(r), 3kr, Lr, Br, δ, Rest).

end for
return ẑ(R+1)

end procedure
procedure EstimateValues(x, ẑ, k′, L, B, δ, Rest)

for r ∈ [Rest] do
Choose ar, br ∈ [n] uniformly at random.
Choose σr uniformly at random from the set of odd

numbers in [n].

û(r) ← HashToBins(x, ẑ, Pσ,ar,b, B, δ).
end for
ŵ ← 0
for i ∈ L do

ŵi ← medianr û
(r)

hσ,b(i)
ω−arσi.

. Separate median in real and imaginary axes.
end for
J ← arg max|J|=k′ ‖ŵJ‖2.
return ŵJ

end procedure

Algorithm 4.1: k-sparse recovery for general signals, part
1/2.

Then |S| ≤ (1+1/ε)k = O(k/ε) and
∥∥∥x̂′ − x̂′S∥∥∥2

2
≤ (1+ε)ρ2.

We will show that each i ∈ S is found by LocateSignal
with probability 1−O(α), when B = Ω(k

αε
).

For any i ∈ S define three types of events associated with
i and S and defined over the probability space induced by σ
and b:

• “Collision” event Ecoll(i): holds iff hσ,b(i) ∈ hσ,b(S \ {i});
• “Large offset” event Eoff (i): holds iff |oσ,b(i)| ≥ (1 −
α)n/(2B); and

• “Large noise”event Enoise(i): holds iff
∥∥∥x̂′h−1

σ,b
(hσ,b(i))\S

∥∥∥2

2
≥

Err2(x̂′, k)/(αB).

By Claims 3.1 and 3.2, Pr[Ecoll(i)] ≤ 4 |S| /B = O(α) and
Pr[Eoff (i)] ≤ 2α for any i ∈ S.

Claim 4.1. For any i ∈ S, Pr[Enoise(i)] ≤ 4α.

Proof. For each j 6= i, Pr[hσ,b(j) = hσ,b(i)] ≤ Pr[|σj − σi| <
n/B] ≤ 4/B by Lemma 2.4. Then

E[
∥∥∥x̂′h−1

σ,b
(hσ,b(i))\S

∥∥∥2

2
] ≤ 4

∥∥∥x̂′[n]\S

∥∥∥2

2
/B

The result follows by Markov’s inequality.

We will show for i ∈ S that if none of Ecoll(i), Eoff (i),
and Enoise(i) hold then SparseFFTInner recovers x̂′i with
1−O(α) probability.

Lemma 4.2. Let a ∈ [n] uniformly at random, B divide
n, and the other parameters be arbitrary in

û = HashToBins(x, ẑ, Pσ,a,b, B, δ, α).

569

procedure LocateSignal(x, ẑ, B, α, δ)
Choose uniformly at random σ, b ∈ [n] with σ odd.

Initialize l
(1)
i = (i− 1)n/B for i ∈ [B].

Let w0 = n/B, t = logn, t′ = t/4, Dmax = logt′(w0 +
1).

Let Rloc = Θ(log1/α(t/α)) per Lemma 4.5.
for D ∈ [Dmax] do

l(D+1) ← LocateInner(x, ẑ, B, δ, α, σ, β, l(D),
w0/(t

′)D−1, t, Rloc)
end for
L← {π−1

σ,b(l
(Dmax+1)
j) | j ∈ [B]}

return L
end procedure

. δ, α parameters for G, G′

. (l1, l1 + w), . . . , (lB , lB + w) the plausible regions.
. B ≈ k/ε the number of bins

. t ≈ logn the number of regions to split into.
. Rloc ≈ log t = log logn the number of rounds to run

procedure LocateInner(x, ẑ, B, δ, α, σ, b, l, w, t, Rloc)

Let s = Θ(α1/3).
Let vj,q = 0 for (j, q) ∈ [B]× [t].
for r ∈ [Rloc] do

Choose a ∈ [n] uniformly at random.
Choose β ∈ { snt

4w
, . . . , snt

2w
} uniformly at random.

û← HashToBins(x, ẑ, Pσ,a,b, B, δ, α).
û′ ← HashToBins(x, ẑ, Pσ,a+β,b, B, δ, α).
for j ∈ [B] do

cj ← φ(ûj/û
′
j)

for q ∈ [t] do

mj,q ← lj + q−1/2
t

w

θj,q ← 2π(mj,q+σb)

n
mod 2π

if min(|βθj,q − cj | , 2π − |βθj,q − cj |) < sπ
then

vj,q ← vj,q + 1
end if

end for
end for

end for
for j ∈ [B] do

Q∗ ← {q ∈ [t] | vj,q > Rloc/2}
if Q∗ 6= ∅ then

l′j ← minq∈Q∗ lj + q−1
t
w

else
l′j ←⊥

end if
end for
return l′

end procedure

Algorithm 4.2: k-sparse recovery for general signals, part
2/2.

Then for any i ∈ [n] with j = hσ,b(i) and none of Ecoll(i),
Eoff (i), or Enoise(i) holding,

E[
∣∣∣ûj − x̂′iωaσi∣∣∣2] ≤ 2

ρ2

αB

Proof. Let Ĝ′ = Ĝ′B,δ,α. Let T = h−1
σ,b(j)\{i}. We have

that T ∩ S = {} and Ĝ′−oσ,b(i) = 1. By Lemma 3.3,

ûj − x̂′iωaσi =
∑
i′∈T

Ĝ′−oσ(i′)x̂′i′ω
aσi′ ± δ ‖x̂‖1 .

Because the σi′ are distinct for i′ ∈ T , we have by Parseval’s
theorem

Ea

∣∣∣∣∣∑
i′∈T

Ĝ′−oσ(i′)x̂′i′ω
aσi′

∣∣∣∣∣
2

=
∑
i′∈T

(Ĝ′−oσ(i′)x̂′i′)
2

≤
∥∥∥x̂′T∥∥∥2

2

Since |X + Y |2 ≤ 2 |X|2 + 2 |Y |2 for any X,Y , we get

Ea[
∣∣∣ûj − x̂′iωaσi∣∣∣2] ≤ 2

∥∥x′T∥∥2

2
+ 2δ2 ‖x̂‖21

≤ 2 Err2(x̂′, k)/(αB) + 2δ2 ‖x̂‖21
≤ 2ρ2/(αB).

4.3 Properties of LocateSignal

In our intuition, we made a claim that if β ∈ [n/(16w), n/(8w)]
uniformly at random, and i > 16w, then 2π

n
βi is “roughly

uniformly distributed about the circle” and hence not con-
centrated in any small region. This is clear if β is chosen as
a random real number; it is less clear in our setting where
β is a random integer in this range. We now prove a lemma
that formalizes this claim.

Lemma 4.3. Let T ⊂ [m] consist of t consecutive integers,
and suppose β ∈ T uniformly at random. Then for any
i ∈ [n] and set S ⊂ [n] of l consecutive integers,

Pr[βi mod n ∈ S] ≤ dim/ne (1+bl/ic)/t ≤ 1

t
+
im

nt
+
lm

nt
+
l

it

Proof. Note that any interval of length l can cover at
most 1 + bl/ic elements of any arithmetic sequence of com-
mon difference i. Then {βi | β ∈ T} ⊂ [im] is such a
sequence, and there are at most dim/ne intervals an + S
overlapping this sequence. Hence at most dim/ne (1+bl/ic)
of the β ∈ [m] have βi mod n ∈ S. Hence

Pr[βi mod n ∈ S] ≤ dim/ne (1 + bl/ic)/t.

Lemma 4.4. Let i ∈ S. Suppose none of Ecoll(i), Eoff (i),
and Enoise(i) hold, and let j = hσ,b(i). Consider any run
of LocateInner with πσ,b(i) ∈ [lj , lj + w] . Let f > 0 be a
parameter such that

B =
Ck

αfε
.

for C larger than some fixed constant. Then πσ,b(i) ∈ [l′j , l
′
j+

4w/t] with probability at least 1− tfΩ(Rloc),

Proof. Let τ = πσ,b(i) ≡ σ(i− b) (mod n), and for any
j ∈ [n] define

θ∗j =
2π

n
(j + σb) (mod 2π)

so θ∗τ = 2π
n
σi. Let g = Θ(f1/3), and C′ = Bαε

k
= Θ(1/g3).

To get the result, we divide [lj , lj + w] into t “regions”,
Qq = [lj + q−1

t
w, lj + q

t
w] for q ∈ [t]. We will first show that

in each round r, cj is close to βθ∗τ with 1−g probability. This
will imply that Qq gets a“vote,” meaning vj,q increases, with
1− g probability for the q′ with τ ∈ Qq′ . It will also imply
that vj,q increases with only g probability when |q − q′| >

570

3. Then Rloc rounds will suffice to separate the two with
1 − f−Ω(Rloc) probability. We get that with 1 − tf−Ω(Rloc)

probability, the recovered Q∗ has |q − q′| ≤ 3 for all q ∈
Q∗. If we take the minimum q ∈ Q∗ and the next three
subregions, we find τ to within 4 regions, or 4w/t locations,
as desired.

In any round r, define û = û(r) and a = ar. We have by
Lemma 4.2 and that i ∈ S that

E[
∣∣∣ûj − ωaσix̂′i∣∣∣2] ≤ 2

ρ2

αB
=

2k

Bαε
µ2

=
2

C′
µ2 ≤ 2

C′
|x̂′i|2.

Note that φ(ωaσi) = −aθ∗τ . Thus for any p > 0, with prob-
ability 1− p we have

∣∣∣ûj − ωaσix̂′i∣∣∣ ≤√ 2

C′p

∣∣∣x̂′i∣∣∣∥∥∥φ(ûj)− (φ(x̂′i)− aθ∗τ)
∥∥∥
©
≤ sin−1(

√
2

C′p
)

where ‖x− y‖© = minγ∈Z |x− y + 2πγ| denotes the “circu-
lar distance” between x and y. The analogous fact holds for
φ(û′j) relative to φ(x̂′i)− (a+β)θ∗τ . Therefore with at least
1− 2p probability,

‖cj − βθ∗τ‖© =
∥∥∥φ(ûj)− φ(û′j)− βθ∗τ

∥∥∥
©

=

∥∥∥∥(φ(ûj)− (φ(x̂′i)− aθ∗τ)
)
−(

φ(û′j)− (φ(x̂′i)− (a+ β)θ∗τ)
)∥∥∥∥
©

≤
∥∥∥φ(ûj)− (φ(x̂′i)− aθ∗τ)

∥∥∥
©

+∥∥∥φ(û′j)− (φ(x̂′i)− (a+ β)θ∗τ)
∥∥∥
©

≤2 sin−1(

√
2

C′p
)

by the triangle inequality. Thus for any s = Θ(g) and p =
Θ(g), we can set C′ = 2

p sin2(sπ/4)
= Θ(1/g3) so that

‖cj − βθ∗τ‖© < sπ/2 (4)

with probability at least 1− 2p.
Equation (4) shows that cj is a good estimate for i with

good probability. We will now show that this means the ap-
proprate “region”Qq′ gets a “vote” with “large” probability.

For the q′ with τ ∈ [lj + q′−1
t
w, lj + q′

t
w], we have that

mj,q′ = lj + q′−1/2
t

w satisfies

|τ −mj,q′ | ≤
w

2t

so

|θ∗τ − θj,q′ | ≤
2π

n

w

2t
.

Hence by Equation (4), the triangle inequality, and the choice

of B ≤ snt
2w

,

‖cj − βθj,q′‖© ≤ ‖cj − βθ
∗
τ‖© + ‖βθ∗τ − βθj,q′‖©

<
sπ

2
+
βπw

nt

≤ sπ

2
+
sπ

2

= sπ.

Thus, vj,q′ will increase in each round with probability at
least 1− 2p.

Now, consider q with |q − q′| > 3. Then |τ −mj,q| ≥ 7w
2t

,
and (from the definition of β > snt

4w
) we have

β |τ −mj,q| ≥
7sn

8
>

3sn

4
. (5)

We now consider two cases. First, suppose that |τ −mj,q| ≤
w
st

. In this case, from the definition of β it follows that

β |τ −mj,q| ≤ n/2.

Together with Equation (5) this implies

Pr[β(τ −mj,q) mod n ∈ [−3sn/4, 3sn/4]] = 0.

On the other hand, suppose that |τ −mj,q| > w
st

. In this
case, we use Lemma 4.3 with parameters l = 3sn/2, m =
snt
2w

, t = snt
4w

, i = (τ −mj,q) and n = n, to conclude that

Pr[β(τ −mj,q) mod n ∈ [−3sn/4, 3sn/4]]

≤ 4w

snt
+ 2
|τ −mj,q|

n
+ 3s+

3sn

2

st

w

4w

snt

≤ 4w

snt
+

2w

n
+ 9s

<
6

sB
+ 9s < 10s

where we used that |i| ≤ w ≤ n/B, the assumption w
st
< |i|,

t ≥ 1, s < 1, and that s2 > 6/B (because s = Θ(g) and
B = ω(1/g3)).

Thus in either case, with probability at least 1 − 10s we
have

‖βθj,q − βθ∗τ‖© =

∥∥∥∥2πβ(mj,q − τ)

n

∥∥∥∥
©
>

2π

n

3sn

4
=

3

2
sπ

for any q with |q − q′| > 3. Therefore we have

‖cj − βθj,q‖© ≥ ‖βθj,q − βθ
∗
τ‖© − ‖cj − βθ

∗
τ‖© > sπ

with probability at least 1− 10s− 2p, and vj,q is not incre-
mented.

To summarize: in each round, vj,q′ is incremented with
probability at least 1−2p and vj,q is incremented with prob-
ability at most 10s + 2p for |q − q′| > 3. The probabilities
corresponding to different rounds are independent.

Set s = g/20 and p = g/4. Then vj,q′ is incremented
with probability at least 1− g and vj,q is incremented with
probability less than g. Then after Rloc rounds, if |q − q′| >
3,

Pr[vj,q > Rloc/2] ≤

(
Rloc
Rloc/2

)
gRloc/2 ≤ (4g)Rloc/2 = fΩ(Rloc)

for g = f1/3/4. Similarly,

Pr[vj,q′ < Rloc/2] ≤ fΩ(Rloc).

571

Hence with probability at least 1−tfΩ(Rloc) we have q′ ∈ Q∗
and |q − q′| ≤ 3 for all q ∈ Q∗. But then τ − l′j ∈ [0, 4w/t]
as desired.

Because E[|{i ∈ supp(ẑ) | Eoff (i)}|] = α ‖ẑ‖0, the expected

running time is O(RlocBt+Rloc
B
α

log(n/δ) +Rloc ‖ẑ‖0 (1 +
α log(n/δ))).

Lemma 4.5. Suppose B = Ck
α2ε

for C larger than some
fixed constant. The procedure LocateSignal returns a set
L of size |L| ≤ B such that for any i ∈ S, Pr[i ∈ L] ≥
1−O(α). Moreover the procedure runs in expected time

O((
B

α
log(n/δ) + ‖ẑ‖0 (1 + α log(n/δ))) log(n/B)).

Proof. Consider any i ∈ S such that none of Ecoll(i), Eoff (i),
and Enoise(i) hold, as happens with probability 1−O(α).

Set t = logn, t′ = t/4 and Rloc = O(log1/α(t/α)). Let

w0 = n/B and wD = w0/(t
′)D−1, so wDmax+1 < 1 for

Dmax = logt′(w0 + 1) < t. In each round D, Lemma 4.4

implies that if πσ,b(i) ∈ [l
(D)
j , l

(D)
j + wD] then πσ,b(i) ∈

[l
(D+1)
j , l

(D+1)
j +wD+1] with probability at least 1−αΩ(Rloc) =

1 − α/t. By a union bound, with probability at least 1 −
α we have πσ,b(i) ∈ [l

(Dmax+1)
j , l

(Dmax+1)
j + wDmax+1] =

{l(Dmax+1)
j }. Thus i = π−1

σ,b(l
(Dmax+1)
j) ∈ L.

SinceRlocDmax = O(log1/α(t/α) logt(n/B)) = O(log(n/B)),
the running time is

O(Dmax(Rloc
B

α
log(n/δ) +Rloc ‖ẑ‖0 (1 + α log(n/δ))))

=O((
B

α
log(n/δ) + ‖ẑ‖0 (1 + α log(n/δ))) log(n/B)).

4.4 Properties of EstimateValues

Lemma 4.6. For any i ∈ L,

Pr[
∣∣∣ŵi − x̂′i∣∣∣2 > µ2] < e−Ω(Rest)

if B > Ck
αε

for some constant C.

Proof. Define er = û
(r)
j ω−arσi − x̂′i in each round r.

Suppose none of E
(r)
coll(i), E

(r)
off (i), and E

(r)
noise(i) hold, as hap-

pens with probability 1−O(α). Then by Lemma 4.2,

Ear [|er|2] ≤ 2
ρ2

αB
=

2k

αεB
µ2 <

2

C
µ2

Hence with 3/4−O(α) > 5/8 probability in total,

|er|2 <
8

C
µ2 < µ2/2

for sufficiently large C. Then with probability at least 1 −
e−Ω(Rest), both of the following occur:∣∣∣median

r
real(er)

∣∣∣2 < µ2/2∣∣∣median
r

imag(er)
∣∣∣2 < µ2/2.

If this is the case, then |medianr er|2 < µ2. Since ŵi =

x̂′i + median er, the result follows.

Lemma 4.7. Let Rest ≥ C log B
γfk

for some constant C
and parameters γ, f > 0. Then if EstimateValues is run
with input k′ = 3k, it returns ŵJ for |J | = 3k satisfying

Err2(x̂′L − ŵJ , fk) ≤ Err2(x̂′L, k) +O(kµ2)

with probability at least 1− γ.

Proof. By Lemma 4.6, each index i ∈ L has

Pr[
∣∣∣ŵi − x̂′i∣∣∣2 > µ2] <

γfk

B
.

Let U = {i ∈ L |
∣∣∣ŵi − x̂′i∣∣∣2 > µ2}. With probability 1− γ,

|U | ≤ fk; assume this happens. Then∥∥∥(x̂′ − ŵ)L\U

∥∥∥2

∞
≤ µ2. (6)

Let T contain the top 2k coordinates of ŵL\U . By the
analysis of Count-Sketch (most specifically, Theorem 3.1
of [PW11]), the `∞ guarantee (6) means that∥∥∥x̂′L\U − ŵT∥∥∥2

2
≤ Err2(x̂′L\U , k) + 3kµ2. (7)

Because J is the top 3k > (2+f)k coordinates of ŵL, T ⊂ J .
Let J ′ = J \ (T ∪ U), so |J ′| ≤ k. Then

Err2(x̂′L − ŵJ , fk) ≤
∥∥∥x̂′L\U − ŵJ\U∥∥∥2

2

=
∥∥∥x̂′L\(U∪J′) − ŵT∥∥∥2

2
+
∥∥∥(x̂′ − ŵ)J′

∥∥∥2

2

≤
∥∥∥x̂′L\U − ŵT∥∥∥2

2
+
∣∣J ′∣∣ ∥∥∥(x̂′ − ŵ)J′

∥∥∥2

∞

≤ Err2(x̂′L\U , k) + 3kµ2 + kµ2

= Err2(x̂′L\U , k) +O(kµ2)

where we used Equations (6) and (7).

4.5 Properties of SparseFFT

We will show that x̂− ẑ(r) gets sparser as r increases, with
only a mild increase in the error.

Lemma 4.8. Define x̂(r) = x̂ − ẑ(r). Consider any one
loop r of SparseFFT, running with parameters (B, k, α) =
(Br, kr, αr) such that B ≥ Ck

α2ε
for some C larger than some

fixed constant. Then for any f > 0,

Err2(x̂(r+1), fk) ≤ (1 + ε) Err2(x̂(r), k) +O(εδ2n ‖x̂‖21)

with probability 1−O(α/f), and the running time is

O((‖ẑ(r)‖0(1+α log(n/δ))+
B

α
log(n/δ))(log

1

αε
+log(n/B))).

Proof. We use Rest = O(log B
αk

) = O(log 1
αε

) rounds
inside EstimateValues.

The running time for LocateSignal is

O((
B

α
log(n/δ) + ‖ẑ(r)‖0(1 + α log(n/δ))) log(n/B)),

and for EstimateValues is

O((
B

α
log(n/δ) + ‖ẑ(r)‖0(1 + α log(n/δ))) log

1

αε
)

for a total running time as given.
Recall that in round r, µ2 = ε

k
(Err2(x̂(r), k) + δ2n ‖x̂‖21)

and S = {i ∈ [n] |
∣∣∣x̂(r)
i

∣∣∣2 > µ2}. By Lemma 4.5, each

572

i ∈ S lies in Lr with probability at least 1 − O(α). Hence
|S \ L| < fk with probability at least 1−O(α/f). Then

Err2(x̂
(r)

[n]\L, fk) ≤
∥∥∥x̂(r)

[n]\(L∪S)

∥∥∥2

2

≤ Err2(x̂
(r)

[n]\(L∪S), k) + k
∥∥∥x̂(r)

[n]\(L∪S)

∥∥∥2

∞

≤ Err2(x̂
(r)

[n]\L, k) + kµ2. (8)

Let ŵ = ẑ(r+1)− ẑ(r) = x̂(r)− x̂(r+1) by the vector recovered
by EstimateValues. Then supp(ŵ) ⊂ L, so

Err2(x̂(r+1), 2fk) = Err2(x̂(r) − ŵ, 2fk)

≤ Err2(x̂
(r)

[n]\L, fk) + Err2(x̂
(r)
L − ŵ, fk)

≤ Err2(x̂
(r)

[n]\L, fk) + Err2(x̂
(r)
L , k) +O(kµ2)

by Lemma 4.7. But by Equation (8), this gives

Err2(x̂(r+1), 2fk) ≤ Err2(x̂
(r)

[n]\L, k) + Err2(x̂
(r)
L , k) +O(kµ2)

≤ Err2(x̂(r), k) +O(kµ2)

= (1 +O(ε)) Err2(x̂(r), k) +O(εδ2n ‖x̂‖21).

The result follows from rescaling f and ε by constant factors.

Given the above, this next proof follows a similar argu-
ment to [IPW11], Theorem 3.7.

Theorem 4.9. With 2/3 probability, SparseFFT recov-

ers ẑ(R+1) such that∥∥∥x̂− ẑ(R+1)
∥∥∥

2
≤ (1 + ε) Err(x̂, k) + δ ‖x̂‖2

in O(k
ε

log(n/k) log(n/δ)) time.

Proof. Define fr = O(1/r2) so
∑
fr < 1/4. ChooseR so∏

r≤R fr < 1/k ≤
∏
r<R fr. Then R = O(log k/ log log k),

since
∏
r≤R fr < (fR/2)R/2 = (2/R)R.

Set εr = frε, αr = Θ(f2
r), kr = k

∏
i<r fi, Br = O(k

ε
αrfr).

Then Br = ω(kr
α2
rεr

), so for sufficiently large constant the

constraint of Lemma 4.8 is satisfied. For appropriate con-
stants, Lemma 4.8 says that in each round r,

Err2(x̂(r+1), kr+1) = Err2(x̂(r+1), frkr) (9)

≤ (1 + frε) Err2(x̂(r), kr) +O(frεδ
2n ‖x̂‖21)

with probability at least 1 − fr. The error accumulates, so
in round r we have

Err2(x̂(r), kr) ≤ Err2(x̂, k)
∏
i<r

(1 + fiε)+∑
i<r

O(frεδ
2n ‖x̂‖21)

∏
i<j<r

(1 + fjε)

with probability at least 1 −
∑
i<r fi > 3/4. Hence in the

end, since kR+1 = k
∏
i≤R fi < 1,∥∥∥x̂(R+1)

∥∥∥2

2
= Err2(x̂(R+1), kR+1)

≤ Err2(x̂, k)
∏
i≤R

(1 + fiε) +O(Rεδ2n ‖x̂‖21)
∏
i≤R

(1 + fiε)

with probability at least 3/4. We also have∏
i

(1 + fiε) ≤ eε
∑
i fi ≤ e

making ∏
i

(1 + fiε) ≤ 1 + e
∑
i

fiε < 1 + 2ε.

Thus we get the approximation factor∥∥∥x̂− ẑ(R+1)
∥∥∥2

2
≤ (1 + 2ε) Err2(x̂, k) +O((log k)εδ2n ‖x̂‖21)

with at least 3/4 probability. Rescaling δ by poly(n), using
‖x̂‖21 ≤ n ‖x̂‖2, and taking the square root gives the desired∥∥∥x̂− ẑ(R+1)

∥∥∥
2
≤ (1 + ε) Err(x̂, k) + δ ‖x̂‖2 .

Now we analyze the running time. The update ẑ(r+1)− ẑ(r)

in round r has support size 3kr, so in round r

‖ẑ(r)‖0 ≤
∑
i<r

3kr = O(k).

Thus the expected running time in round r is

O((k(1 + αr log(n/δ)) +
Br
αr

log(n/δ))(log
1

αrεr
+ log(n/Br)))

=O((k +
k

r4
log(n/δ) +

k

εr2
log(n/δ))(log

r2

ε
+ log(nε/k) + log r))

=O((k +
k

εr2
log(n/δ))(log r + log(n/k)))

We split the terms multiplying k and k
εr2

log(n/δ), and sum
over r. First,

R∑
r=1

(log r + log(n/k)) ≤R logR+R log(n/k)

≤O(log k + log k log(n/k))

=O(log k log(n/k)).

Next,

R∑
r=1

1

r2
(log r + log(n/k)) = O(log(n/k))

Thus the total running time is

O(k log k log(n/k) +
k

ε
log(n/δ) log(n/k))

=O(
k

ε
log(n/δ) log(n/k)).

5. REDUCING THE FULL K-DIMENSIONAL
DFT TO THE EXACT K-SPARSE CASE
IN N DIMENSIONS

In this section we show the following lemma. Assume that
k divides n.

Lemma 5.1. Suppose that there is an algorithm A that,
given an n-dimensional vector y such that ŷ is k-sparse,
computes ŷ in time T (k). Then there is an algorithm A′

that given a k-dimensional vector x computes x̂ in time
O(T (k))).

Proof. Given a k-dimensional vector x, we define yi =
xi mod k, for i = 0 . . . n − 1. Whenever A requests a sample
yi, we compute it from x in constant time. Moreover, we

573

have that ŷi = x̂i/(n/k) if i is a multiple of (n/k), and ŷi = 0
otherwise. Thus ŷ is k-sparse. Since x̂ can be immediately
recovered from ŷ, the lemma follows.

Corollary 5.2. Assume that the n-dimensional DFT can-
not be computed in o(n logn) time. Then any algorithm for
the k-sparse DFT (for vectors of arbitrary dimension) must
run in Ω(k log k) time.

6. LOWER BOUND
In this section, we show any algorithm satisfying Equa-

tion (1) must access Ω(k log(n/k)/ log logn) samples of x.
We translate this problem into the language of compres-

sive sensing:

Theorem 6.1. Let F ∈ Cn×n be orthonormal and satisfy
|Fi,j | = 1/

√
n for all i, j. Suppose an algorithm takes m

adaptive samples of Fx and computes x′ with∥∥x− x′∥∥
2
≤ 2 min

k-sparse x∗
‖x− x∗‖2

for any x, with probability at least 3/4. Then it must have
m = Ω(k log(n/k)/ log logn).

Corollary 6.2. Any algorithm computing the approxi-
mate Fourier transform must access Ω(k log(n/k)/ log log n)
samples from the time domain.

If the samples were chosen non-adaptively, we would im-
mediately have m = Ω(k log(n/k)) by [PW11]. However, an
algorithm could choose samples based on the values of pre-
vious samples. In the sparse recovery framework allowing
general linear measurements, this adaptivity can decrease
the number of measurements to O(k log log(n/k)) [IPW11];
in this section, we show that adaptivity is much less effec-
tive in our setting where adaptivity only allows the choice
of Fourier coefficients.

We follow the framework of Section 4 of [PW11]. In this
section we use standard notation from information theory,
including I(x; y) for mutual information, H(x) for discrete
entropy, and h(x) for continuous entropy. Consult a refer-
ence such as [CT91] for details.

Let F ⊂ {S ⊂ [n] : |S| = k} be a family of k-sparse
supports such that:

• |S ⊕ S′| ≥ k for S 6= S′ ∈ F , where ⊕ denotes the exclu-
sive difference between two sets, and

• log |F| = Ω(k log(n/k)).

This is possible; for example, a random code on [n/k]k with
relative distance 1/2 has these properties.

For each S ∈ F , let XS = {x ∈ {0,±1}n | supp(xS) = S}.
Let x ∈ XS uniformly at random. The variables xi, i ∈ S,
are i.i.d. subgaussian random variables with parameter σ2 =
1, so for any row Fj of F , Fjx is subgaussian with parameter
σ2 = k/n. Therefore

Pr
x∈XS

[|Fjx| > t
√
k/n] < 2e−t

2/2

hence for each S, we can choose an xS ∈ XS with∥∥∥FxS∥∥∥
∞
< O(

√
k logn

n
). (10)

Let X = {xS | S ∈ F} be the set of such xS .

Let w ∼ N(0, α k
n
In) be i.i.d. normal with variance αk/n

in each coordinate.
Consider the following process:

Procedure.
First, Alice chooses S ∈ F uniformly at random, then

selects the x ∈ X with supp(x) = S. Alice independently
chooses w ∼ N(0, α k

n
In) for a parameter α = Θ(1) suffi-

ciently small. For j ∈ [m], Bob chooses ij ∈ [n] and observes
yj = Fij (x + w). He then computes the result x′ ≈ x of
sparse recovery, rounds toX by x̂ = arg minx∗∈X ‖x∗ − x′‖2,
and sets S′ = supp(x̂). This gives a Markov chain S → x→
y → x′ → x̂→ S′.

We will show that deterministic sparse recovery algorithms
require large m to succeed on this input distribution x +
w with 3/4 probability. By Yao’s minimax principle, this
means randomized sparse recovery algorithms also require
large m to succeed with 3/4 probability.

Our strategy is to give upper and lower bounds on I(S;S′),
the mutual information between S and S′.

Lemma 6.3. (Analog of Lemma 4.3 of [PW11] for ε =
O(1)) There exists a constant α′ > 0 such that if α < α′,
then I(S;S′) = Ω(k log(n/k)) .

Proof. Assuming the sparse recovery succeeds (as hap-
pens with 3/4 probability), we have ‖x′ − (x+ w)‖2 ≤ 2 ‖w‖2,
which implies ‖x′ − x‖2 ≤ 3 ‖w‖2. Therefore

‖x̂− x‖2 ≤
∥∥x̂− x′∥∥

2
+
∥∥x′ − x∥∥

2

≤ 2
∥∥x′ − x∥∥

2

≤ 6 ‖w‖2 .

We also know ‖x′ − x′′‖2 ≥
√
k for all distinct x′, x′′ ∈ X

by construction. Because E[‖w‖22] = αk, with probability

at least 3/4 we have ‖w‖2 ≤
√

4αk <
√
k/6 for sufficiently

small α. But then ‖x̂− x‖2 <
√
k, so x̂ = x and S = S′.

Thus Pr[S 6= S′] ≤ 1/2.
Fano’s inequality states H(S | S′) ≤ 1+Pr[S 6= S′] log |F|.

Thus

I(S;S′) = H(S)−H(S | S′) ≥ −1+
1

2
log |F| = Ω(k log(n/k))

as desired.

We next show an analog of their upper bound (Lemma 4.1
of [PW11]) on I(S;S′) for adaptive measurements of bounded
`∞ norm. The proof follows the lines of [PW11], but is more
careful about dependencies and needs the `∞ bound on Fx.

Lemma 6.4.

I(S;S′) ≤ O(m log(1 +
1

α
logn)).

Proof. Let Aj = Fij for j ∈ [m], and let w′j = Ajw.

The w′j are independent normal variables with variance α k
n

.
Because the Aj are orthonormal and w is drawn from a rota-
tionally invariant distribution, the w′ are also independent
of x.

Let yj = Ajx + w′j . We know I(S;S′) ≤ I(x; y) because
S → x → y → S′ is a Markov chain. Because the variables

574

Aj are deterministic given y1, . . . , yj−1,

I(x; yj | y1, . . . , yj−1)

=I(x;Ajx+ w′j | y1, . . . , yj−1)

=h(Ajx+ w′j | y1, . . . , yj−1)− h(Ajx+ w′j | x, y1, . . . , yj−1)

=h(Ajx+ w′j | y1, . . . , yj−1)− h(w′j).

By the chain rule for information,

I(S;S′) ≤ I(x; y)

=

m∑
j=1

I(x; yj | y1, . . . , yj−1)

=

m∑
j=1

h(Ajx+ w′j | y1, . . . , yj−1)− h(w′j)

≤
m∑
j=1

h(Ajx+ w′j)− h(w′j).

Thus it suffices to show h(Ajx + w′j) − h(w′j) = O(log(1 +
1
α

logn)) for all j.
Note that Aj depends only on y1, . . . , yj−1, so it is inde-

pendent of w′j . Thus

E[(Ajx+ w′j)
2] = E[(Ajx)2] + E[(w′j)

2] ≤ O(
k logn

n
) + α

k

n

by Equation (10). Because the maximum entropy distribu-
tion under an `2 constraint is a Gaussian, we have

h(Ajx+ w′j)− h(w′j) ≤ h(N(0, O(
k logn

n
) + α

k

n
))− h(N(0, α

k

n
))

=
1

2
log(1 +

O(logn)

α
)

= O(log(1 +
1

α
logn)).

as desired.

Theorem 6.1 follows from Lemma 6.3 and Lemma 6.4,
with α = Θ(1).

7. EFFICIENT CONSTRUCTIONS OF WIN-
DOW FUNCTIONS

Claim 7.1. Let cdf denote the standard Gaussian cumu-
lative distribution function. Then:

1. cdf(t) = 1− cdf(−t).

2. cdf(t) ≤ e−t
2/2 for t < 0.

3. cdf(t) < δ for t < −
√

2 log(1/δ).

4.
∫ t
x=−∞ cdf(x)dx < δ for t < −

√
2 log(3/δ).

5. For any δ, there exists a function c̃dfδ(t) computable in

O(log(1/δ)) time such that
∥∥∥cdf −c̃dfδ

∥∥∥
∞
< δ.

Proof.

1. Follows from the symmetry of Gaussian distribution.

2. Follows from a standard moment generating function bound
on Gaussian random variables.

3. Follows from (2).

4. Property (2) implies that cdf(t) is at most
√

2π < 3 times
larger than the Gaussian pdf. Then apply (3).

5. By (1) and (3), cdf(t) can be computed as ±δ or 1 ± δ
unless |t| <

√
2(log(1/δ)). But then an efficient expan-

sion around 0 only requires O(log(1/δ)) terms to achieve
precision ±δ.
For example, we can truncate the representation [Mar04]

cdf(t) =
1

2
+
e−t

2/2

√
2π

(
t+

t3

3
+

t5

3 · 5 +
t7

3 · 5 · 7 + · · ·
)

at O(log(1/δ)) terms.

Claim 7.2. Define the continuous Fourier transform of
f(t) by

f̂(s) =

∫ ∞
−∞

e−2πistf(t)dt.

For t ∈ [n], define

gt =
√
n

∞∑
j=−∞

f(t+ nj)

and

g′t =

∞∑
j=−∞

f̂(t/n+ j).

Then ĝ = g′, where ĝ is the n-dimensional DFT of g.

Proof. Let ∆1(t) denote the Dirac comb of period 1:
∆1(t) is a Dirac delta function when t is an integer and zero

elsewhere. Then ∆̂1 = ∆1. For any t ∈ [n], we have

ĝt =

n∑
s=1

∞∑
j=−∞

f(s+ nj)e−2πits/n

=

n∑
s=1

∞∑
j=−∞

f(s+ nj)e−2πit(s+nj)/n

=

∞∑
s=−∞

f(s)e−2πits/n

=

∫ ∞
−∞

f(s)∆1(s)e−2πits/nds

= ̂(f ·∆1)(t/n)

= (f̂ ∗∆1)(t/n)

=

∞∑
j=−∞

f̂(t/n+ j)

= g′t.

Lemma 7.3. For any parameters B ≥ 1, δ > 0, and α >

0, there exist flat window functions G and Ĝ′ such that G

can be computed in O(B
α

log(n/δ)) time, and for each i Ĝ′i
can be evaluated in O(log(n/δ)) time.

575

Proof. We will show this for a function Ĝ′ that is a
Gaussian convolved with a box-car filter. First we construct
analogous window functions for the continuous Fourier trans-
form. We then show that discretizing these functions gives
the desired result.

Let D be the pdf of a Gaussian with standard deviation

σ > 1 to be determined later, so D̂ is the pdf of a Gaussian

with standard deviation 1/σ. Let F̂ be a box-car filter of

length 2C for some parameter C < 1; that is, let F̂ (t) = 1 for
|t| < C and F (t) = 0 otherwise, so F (t) = 2Csinc(t/(2C)).

Let G∗ = D · F , so Ĝ∗ = D̂ ∗ F̂ .
Then |G∗(t)| ≤ 2C |D(t)| < 2Cδ for |t| > σ

√
2 log(1/δ).

Furthermore, G∗ is computable in O(1) time.

Its Fourier transform is Ĝ∗(t) = cdf(σ(t+C))− cdf(σ(t−
C)). By Claim 7.1 we have for |t| > C+

√
2 log(1/δ)/σ that

Ĝ∗(t) = ±δ. We also have, for |t| < C−
√

2 log(1/δ)/σ, that

Ĝ∗(t) = 1± 2δ.
Now, for i ∈ [n] let Hi =

√
n
∑∞
j=∞G

∗(i + nj). By

Claim 7.2 it has DFT Ĥi =
∑∞
j=∞ Ĝ

∗(i/n + j). Further-
more, ∑

|i|>σ
√

2 log(1/δ)

|G∗(i)|

≤4C
∑

i<−σ
√

2 log(1/δ)

|D(i)|

≤4C

(∫ −σ√2 log(1/δ)

−∞
|D(x)| dx+D(−σ

√
2 log(1/δ))

)
≤4C(cdf(−

√
2 log(1/δ)) +D(−σ

√
2 log(1/δ)))

≤8Cδ ≤ 8δ.

Thus if we let

Gi =
√
n

∑
|j|<σ
√

2 log(1/δ)

j≡i (mod n)

G∗(j)

for |i| < σ
√

2 log(1/δ) andGi = 0 otherwise, then ‖G−H‖1 ≤
8δ
√
n.

Now, note that for integer i with |i| ≤ n/2,

Ĥi − Ĝ∗(i/n) =
∑
j∈Z
j 6=0

Ĝ∗(i/n+ j)

∣∣∣Ĥi − Ĝ∗(i/n)
∣∣∣ ≤ 2

∞∑
j=0

Ĝ∗(−1/2− j)

≤ 2

∞∑
j=0

cdf(σ(−1/2− j + C))

≤ 2

∫ −1/2

−∞
cdf(σ(x+ C))dx+

2 cdf(σ(−1/2 + C))

≤ 2δ/σ + 2δ ≤ 4δ

by Claim 7.1, as long as

σ(1/2− C) >
√

2 log(3/δ). (11)

Let

Ĝ′i =


1 |i| ≤ n(C −

√
2 log(1/δ)/σ)

0 |i| ≥ n(C +
√

2 log(1/δ)/σ)

c̃dfδ(σ(i+ C)/n)− otherwise

c̃dfδ(σ(i− C)/n)

where c̃dfδ(t) computes cdf(t) to precision±δ in O(log(1/δ))

time, as per Claim 7.1. Then Ĝ′i = Ĝ∗(i/n)±2δ = Ĥi±6δ.
Hence ∥∥∥Ĝ− Ĝ′∥∥∥

∞
≤
∥∥∥Ĝ′ − Ĥ∥∥∥

∞
+
∥∥∥Ĝ− Ĥ∥∥∥

∞

≤
∥∥∥Ĝ′ − Ĥ∥∥∥

∞
+
∥∥∥Ĝ− Ĥ∥∥∥

2

=
∥∥∥Ĝ′ − Ĥ∥∥∥

∞
+ ‖G−H‖2

≤
∥∥∥Ĝ′ − Ĥ∥∥∥

∞
+ ‖G−H‖1

≤ (8
√
n+ 6)δ.

Replacing δ by δ/n and plugging in σ = 4B
α

√
2 log(n/δ) > 1

and C = (1−α/2)/(2B) < 1, we have the required properties
of flat window functions:

• |Gi| = 0 for |i| ≥ Ω(B
α

log(n/δ))

• Ĝ′i = 1 for |i| ≤ (1− α)n/(2B)

• Ĝ′i = 0 for |i| ≥ n/(2B)

• Ĝ′i ∈ [0, 1] for all i.

•
∥∥∥Ĝ′ − Ĝ∥∥∥

∞
< δ.

• We can computeG over its entire support inO(B
α

log(n/δ))
total time.

• For any i, Ĝ′i can be computed in O(log(n/δ)) time for
|i| ∈ [(1− α)n/(2B), n/(2B)] and O(1) time otherwise.

The only requirement was Equation (11), which is that

4B

α

√
2 log(n/δ)(1/2− 1− α/2

2B
) >

√
2 log(3n/δ).

This holds if B ≥ 2. The B = 1 case is trivial using the

constant function Ĝ′i = 1.

8. OPEN QUESTIONS

• Design an O(k logn)-time algorithm for general signals.
Alternatively, prove that no such algorithm exists, under
“reasonable” assumptions.10

• Reduce the sample complexity of the algorithms. Cur-
rently, the number of samples used by each algorithm is
only bounded by their running times.

10The Ω(k log(n/k)/ log logn) lower bound for the sample
complexity shows that the running time of our algorithm,
O(k logn log(n/k)), is equal to the sample complexity of the
problem times (roughly) logn. One could speculate that this
logarithmic discrepancy is due to the need for using FFT to
process the samples. Although we do not have any evidence
for the optimality of our general algorithm, the“sample com-
plexity times log n” bound appears to be a natural barrier
to further improvements.

576

• Extend the results to other (related) tasks, such as com-
puting the sparse Walsh-Hadamard Transform.

• Extend the algorithm to the case when n is not a power of
2. Note that some of the earlier algorithms, e.g., [GMS05],
work for any n.

• Improve the failure probability of the algorithms. Cur-
rently, the algorithms only succeed with constant proba-
bility. Straightforward amplification would take a log(1/p)
factor slowdown to succeed with 1 − p probability. One
would hope to avoid this slowdown.

Acknowledgements
The authors would like to thank Martin Strauss and Lud-
wig Schmidt for many helpful comments about the writing
of the paper. This work is supported by the Space and
Naval Warfare Systems Center Pacific under Contract No.
N66001-11-C-4092, David and Lucille Packard Fellowship,
and NSF grants CCF-1012042 and CNS-0831664. E. Price
is supported in part by an NSF Graduate Research Fellow-
ship.

9. REFERENCES
[AFS93] R. Agrawal, C. Faloutsos, and A. Swami.

Efficient similarity search in sequence
databases. Int. Conf. on Foundations of Data
Organization and Algorithms, pages 69–84,
1993.

[AGS03] A. Akavia, S. Goldwasser, and S. Safra.
Proving hard-core predicates using list
decoding. Annual Symposium on Foundations
of Computer Science, 44:146–159, 2003.

[Aka10] A. Akavia. Deterministic sparse Fourier
approximation via fooling arithmetic
progressions. COLT, pages 381–393, 2010.

[CGX96] A. Chandrakasan, V. Gutnik, and
T. Xanthopoulos. Data driven signal
processing: An approach for energy efficient
computing. International Symposium on Low
Power Electronics and Design, 1996.

[CRT06] E. Candes, J. Romberg, and T. Tao. Robust
uncertainty principles: Exact signal
reconstruction from highly incomplete
frequency information. IEEE Transactions on
Information Theory, 52:489–509, 2006.

[CT91] Thomas Cover and Joy Thomas. Elements of
Information Theory. Wiley Interscience, 1991.

[Don06] D. Donoho. Compressed sensing. IEEE
Transactions on Information Theory,
52(4):1289–1306, 2006.

[DRZ07] I. Daubechies, O. Runborg, and J. Zou. A
sparse spectral method for homogenization
multiscale problems. Multiscale Model. Sim.,
6(3):711–740, 2007.

[GGI+02] A. Gilbert, S. Guha, P. Indyk,
M. Muthukrishnan, and M. Strauss.
Near-optimal sparse Fourier representations via
sampling. STOC, 2002.

[GL89] O. Goldreich and L. Levin. A
hard-corepredicate for allone-way functions.
STOC, pages 25–32, 1989.

[GLPS10] Anna C. Gilbert, Yi Li, Ely Porat, and
Martin J. Strauss. Approximate sparse
recovery: optimizing time and measurements.
In STOC, pages 475–484, 2010.

[GMS05] A. Gilbert, M. Muthukrishnan, and M. Strauss.
Improved time bounds for near-optimal space
Fourier representations. SPIE Conference,
Wavelets, 2005.

[GST08] A.C. Gilbert, M.J. Strauss, and J. A. Tropp. A
tutorial on fast Fourier sampling. Signal
Processing Magazine, 2008.

[HIKP12a] H. Hassanieh, P. Indyk, D. Katabi, and
E. Price. sFFT: Sparse Fast Fourier Transform.
http://groups.csail.mit.edu/netmit/sFFT/,
2012.

[HIKP12b] H. Hassanieh, P. Indyk, D. Katabi, and
E. Price. Simple and practical algorithm for
sparse Fourier transform. SODA, 2012.

[HT01] Juha Heiskala and John Terry, Ph.D. OFDM
Wireless LANs: A Theoretical and Practical
Guide. Sams, Indianapolis, IN, USA, 2001.

[IPW11] P. Indyk, E. Price, and D. P. Woodruff. On the
power of adaptivity in sparse recovery. FOCS,
2011.

[Iwe10] M. A. Iwen. Combinatorial sublinear-time
Fourier algorithms. Foundations of
Computational Mathematics, 10:303–338, 2010.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence
of variables on boolean functions. FOCS, 1988.

[KM91] E. Kushilevitz and Y. Mansour. Learning
decision trees using the Fourier spectrum.
STOC, 1991.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant
depth circuits, Fourier transform, and
learnability. Journal of the ACM (JACM),
1993.

[LVS11] Mengda Lin, A. P. Vinod, and Chong
Meng Samson See. A new flexible filter bank
for low complexity spectrum sensing in
cognitive radios. Journal of Signal Processing
Systems, 62(2):205–215, 2011.

[Man92] Y. Mansour. Randomized interpolation and
approximation of sparse polynomials. ICALP,
1992.

[Mar04] G. Marsaglia. Evaluating the normal
distribution. Journal of Statistical Software,
11(4):1–7, 2004.

[MNL10] A. Mueen, S. Nath, and J. Liu. Fast
approximate correlation for massive time-series
data. In Proceedings of the 2010 international
conference on Management of data, pages
171–182. ACM, 2010.

[O’D08] R. O’Donnell. Some topics in analysis of
boolean functions (tutorial). STOC, 2008.

[PW11] E. Price and D. P. Woodruff.
(1 + ε)-approximate sparse recovery. FOCS,
2011.

577

